The authors gratefully acknowledge the support of the Foundational Research Fund of the U.S. Naval Ordnance Laboratory, Task FR-44, and NASA grant NsG-398 of the Computer Science Center, University of Maryland. They also thank Dr Isabella Karle for assistance in the preliminary stages of the symbolic addition procedure.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.
- CADY, H. & LARSON, A. L. (1965). Acta Cryst. 18, 485.
- FERGUSON, G. & SIM, G. A. (1962). J. Chem. Soc. p. 1767.
- FLÜRSCHEIM, B. (1921). J. Soc. Chem. Ind. 40, 97.
- GAFNER, G. & HERBSTEIN, F. H. (1962). Acta Cryst. 15, 1081.
- HAUPTMAN, H. & KARLE, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. ACA Monograph No.3. Pittsburgh: Polycrystal Book Service.

- HOLDEN, J. R. (1962). NOLTR 62–46, U.S. Naval Ordnance Laboratory, June 1962. Available through Defense Documentation Center, Cameron Station, Alexandria, Virginia.
- HOLDEN, J. R. (1963). NOLTR 62–158, U.S. Naval Ordnance Laboratory, April 1963. See above for availability. HUGHES, E.W. (1941). J. Amer. Chem. Soc. 63, 1737.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- LANGSETH, A. & STOICHEFF, B. P. (1956). Canad. J. Phys. 34, 350.
- LINGAFELTER, E. C. & DONOHUE, J. (1966). Acta Cryst. 20, 321. MCWEENY, R. (1951). Acta Cryst. 4, 513.
- PAULING, L. (1960). The Nature of the Chemical Bond 3rd. ed. Ithaca: Cornell Univ. Press.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- STEWART, J. M. et al. (1964). Technical Report Tr 64-6, NsG-398. Computer Science Center of the University of Maryland, College Park.
- TRUEBLOOD, K. N., GOLDISH, E. & DONOHUE, J. (1961). Acta Cryst. 14, 1009.

Acta Cryst. (1966). 21, 670

The Crystal Structures of UC₂*

BY ALLEN L. BOWMAN, GEORGE P. ARNOLD, WILLARD G. WITTEMAN, TERRY C. WALLACE AND NORRIS G. NERESON Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico, U.S.A.

(Received 3 March 1966)

A high-temperature neutron diffraction study of UC₂ shows a tetragonal phase at 1700°C with the C11a calcium carbide type structure, $a_0 = 3.633$, $c_0 = 6.036$ Å, z = 0.395, and a cubic phase at 1900°C with the B1 sodium chloride type structure, $a_0 = 5.488$ Å. The cubic phase contains C₂ groups whose alignment was reduced to two possible cases, free rotation or random orientation along [111].

The phase diagram of the uranium-carbon system (Storms, 1965) lists a compound, uranium dicarbide, of approximate composition UC₂ existing in two high-temperature forms but unstable at room temperature. A structure has been described from room temperature studies of quenched samples (Litz, Garrett & Croxton, 1948; Austin, 1959) as tetragonal, space group I4/mmm, with uranium atoms in (0,0,0), carbon atoms in (0,0,z), z=0.388. The structure of the high temperature form has been reported from high temperature X-ray data to be the CaF₂ type (Wilson, 1960) or the FeS₂ type (Bredig, 1960).

A sample of uranium dicarbide containing excess carbon was prepared from the high-purity elements by arc-melting and pulverizing, and was examined by high-temperature neutron-diffraction (Bowman, Witteman, Arnold, Hull & Bowman, 1966). The diffraction data were obtained from $2\theta=25$ to 70° at a wavelength of 1.3926 Å, and were corrected by subtracting a blank run on the graphite sample holder. The tetragonal form was observed at 1700° and the cubic form at 1900°C. The corrected patterns are shown in Fig. 1. Observed intensities were determined by least-squares analysis of the diffraction data (Bowman, Wallace, Yarnell, Wenzel & Storms, 1965), and were fitted to trial structures by least-squares solutions of the equation (Bacon, 1962)

$$I = K \frac{\exp(-\mu t \sec \theta)}{\sin^2 2\theta} \exp\left(-2B \frac{\sin^2 \theta}{\lambda^2}\right) jF^2.$$
(1)

Chemical analysis of the sample showed U 90·2%, C 9·40%, free C 0·96%, O 0·15%, N 60 ppm. Accordingly, a composition of UC_{1.85} was used for the intensity calculations, with scattering factors of 0.85×10^{-12} cm for uranium and 0.661×10^{-12} cm for carbon.

The tetragonal structure previously reported was confirmed, with $K=0.089\pm0.007$, $B=2.7\pm0.6$, $z=0.395\pm0.003$, R=0.07, where $R=\Sigma w |I_0-I_c|/\Sigma w I_0$. Lattice parameters at 1700° were $a_0=3.633$, $c_0=6.036$ Å, giving a C-C distance of 1.27 ± 0.04 Å.

The high-temperature pattern was indexed as cubic, $a_0 = 5.488$ Å at 1900°, in agreement with the earlier X-ray data (Wilson, 1960). The data require a sodium

^{*} Work done under the auspices of the U.S. Atomic Energy Commission.

Table 1. Neutron diffraction data for $UC_2(t)$

hkl	Io	Ic
101	< 0.2	0.8
002	17.0	16.2
110	73.4	72.9
112	26.9	23.9
200	21.8	32.1
103	26.8	24.2
211	< 0.2	0.3
202	13.9	13.2
004	< 0.2	0.1
114	< 0.2	0.3
220	12.1	12.3
213	22.0	19.4
	101 002 110 112 200 103 211 202 004 114 220	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2.	Neutron	diffraction	data f	or $UC_2($	c)

d	hkl	Io	$I_{c}(I)$	$I_{c}(II)$
3.17	111	< 0.4	0.4	0.3
2.75	200	59.4	59.6	59.6
1.94	220	29.5	26.9	27.1
1.66	311	< 0.3	2.9	3.9
1.59	222	3.7	5.7	6.2
1.37	400	< 0.3	1.6	0.9
1.26	331	2 ·6	2.3	1.9

chloride type structure containing C₂ groups similar to the structure of KCN (Elliott & Hastings, 1961; Sequeira, 1965). The absence of peaks with odd indices rules out the CaF₂-type structure and the FeS₂-type structure. The alignment of the C₂ groups was reduced to two possible cases, a free rotator model (I) with $K=0.092\pm0.008$, $B=7.4\pm1.1$, $d_{C-C}=1.22\pm0.11$ Å, R=0.056, and a random disorder model (C₂ groups oriented along [111]) (II) with $K=0.098\pm0.011$, B= 7.6 ± 1.2 , $d_{C-C}=1.26\pm0.15$ Å, R=0.065.

The observed C-C distances, when corrected for the effect of thermal motion (Busing & Levy, 1964), fall in the range 1.32-1.40 Å, in good agreement with the value of 1.34 Å obtained at room temperature (Austin, 1959). The NaCl-type structure found for the cubic UC₂ is consistent with the observed complete solid solubility between UC (NaCl-type structure) and UC₂ at high temperatures (Storms, 1965). The marked in-

crease in the temperature factor from the tetragonal to the cubic phase is consistent with an expected large increase in the mobility of the carbon atoms at the transition point.

References

- AUSTIN, A. E. (1959). Acta Cryst. 12, 159.
- BACON, G. E. (1962). *Neutron Diffraction*. Oxford: Clarendon Press.
- BOWMAN, A. L., WALLACE, T. C., YARNELL, J. L., WENZEL, R. G. & STORMS, E. K. (1965). Acta Cryst. 19, 6.
- BOWMAN, M. G., WITTEMAN, W. G., ARNOLD, G. P., HULL, D. E. & BOWMAN, A. L. (1966). *Rev. Sci. Instrum.* To be published.
- BREDIG, M. A. (1960). J. Amer. Ceram. Soc. 43, 493.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- ELLIOTT, N. & HASTINGS, J. (1961). Acta Cryst. 14, 1018.
- LITZ, L. M., GARRETT, A. B. & CROXTON, F. C. (1948). J. Amer. Chem. Soc. 70, 1718.
- SEQUEIRA, A. (1965). Acta Cryst. 18, 291.
- STORMS, E. K. (1965). Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transport in Solids, Vienna, Austria. To be published.
- WILSON, W. B. (1960). J. Amer. Ceram. Soc. 43, 77.

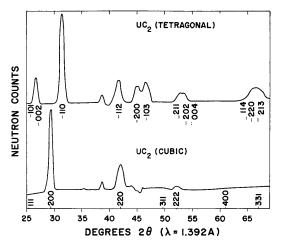


Fig. 1. Neutron diffraction powder patterns of uranium dicarbide.